Category Archives: math.CA

Classical analysis

Open Question on Sufficiency To Be a Density Basis

This post is adapted from a question I posted on Math.StackExchange approximately two weeks ago, which has not received a satisfactory answer. If you have a solution or a counterexample, please add it to Math.SE instead of here. Let be … Continue reading

Posted in math.CA | Tagged , , , | Leave a comment

A Differentiation Basis without the Vitali Covering Property

— 1. Introduction — A differentiation basis is a fine collection of bounded measurable sets ; i.e. for every there exists a sequence with diameter tending to zero. Classical examples of differentiation bases are the collections of balls and cubes. … Continue reading

Posted in math.CA | Tagged , , , | Leave a comment

Kuran’s Theorem

It is well-known that a harmonic function satisfies the mean value property for all balls and spheres contained in . (We abuse notation and use to denote both the -dimensional Lebesgue measure and the -dimensional surface measure.) This mean value … Continue reading

Posted in math.AP, math.CA | Tagged , , , , | Leave a comment

Heat Ball and Heat Sphere Mean Value Property

Like solutions to the Laplace equation, (classical) solutions to the heat equation satisfy a mean value property. But instead of integrals over balls or spheres, the heat mean value property involves integrals over a heat ball. The heat ball of … Continue reading

Posted in math.AP, math.CA | Tagged , , , | Leave a comment

Harmonic Functions: Weyl Lemma

In this post, we prove a generalization of the result that any (clasically) harmonic function defined on a bounded, open set is analytic. If is weakly harmonic, i.e. for any compactly supported function (the space of such functions is denoted … Continue reading

Posted in math.AP, math.CA | Tagged , , , , | 4 Comments

Harmonic Functions: Regularity

I have a confession: I have never actually taken a PDE course. I took an ODE and PDE class offered by the Applied Math department my freshman year, but it wasn’t really a mathematics class–most of the students were physics … Continue reading

Posted in math.AP, math.CA | Tagged , , , , | 1 Comment

Kolmogorov Normability Criterion

This past week I have been refreshing my knowledge of topological vector spaces (tvs) while reading some papers on generalizations of the Mazur-Ulam theorem to metrizable tvs. I intend to upload a typed set of notes on the subject which … Continue reading

Posted in math.CA, math.FA, math.GT | Tagged , , , | 1 Comment