Boundary Mean Value Property for Heat Equation

Matt Rosenzweig

The "heat ball" of radius $r>0$ centered at $(x, t) \in \mathbb{R}^{n} \times \mathbb{R}$ is defined as the set

$$
E(x, t ; r):=\left\{(y, s) \in \mathbb{R}^{n} \times \mathbb{R}: s \leq t, \Phi(x-y, t-s) \geq \frac{1}{r^{n}}\right\}
$$

where Φ is the heat kernel

$$
\Phi(x-y, t-s)=\frac{1}{(4 \pi(t-s))^{n / 2}} e^{-\frac{|x-y|^{2}}{4(t-s)}}
$$

The heat ball is of interest because it is used as the domain of integration to prove a mean value property (MVP) for (classical) solutions of the heat equation $\partial_{t} u-\Delta u=0$ on some bounded open subset $U \subset \mathbb{R}^{n}$.

The formulation of the MVP I learned, which is from [Evans], uses the fact that volume of the unit heat ball $E(1):=E(0,0 ; 1)$ with respect to the weight $|y|^{2} /|s|^{2}$ is 4 . The author, however, omits the details of the computation as they are an exercise in integration. Still, I do not think it is obvious to the general reader-and it certainly wasn't to me-that

$$
\iint_{E(1)} \frac{|y|^{2}}{|s|^{2}} d y d s=4
$$

If you have read my "About Me" section, you know that I like to work out the details, which we will do now.
The first trick to computing this integral is to write the integral as

$$
\iint_{E(1)} \frac{|y|^{2}}{|s|^{2}} d y d s=\int_{0}^{\frac{1}{4 \pi}} \int_{\left\{|y|^{2} \leq(2 n s) \log \frac{1}{4 \pi s}\right\}} \frac{|y|^{2}}{|s|^{2}} d y d s
$$

and recognize that the inner integral lends itself to computation in polar coordinates. Making the change of variable $y=r \omega$, where $\omega \in S^{n-1}$, we obtain

$$
\begin{aligned}
\iint_{E(1)} \frac{|y|^{2}}{|s|^{2}} d y d s & =\int_{0}^{\frac{1}{4 \pi}} \int_{0}^{\left(2 n s \log \frac{1}{4 \pi s}\right)^{1 / 2}} \int_{S^{n-1}} \frac{r^{n+1}}{|s|^{2}} d \omega d r d s \\
& =n \alpha(n) \int_{0}^{\frac{1}{4 \pi}} \int_{0}^{\left(2 n s \log \frac{1}{4 \pi s}\right)^{1 / 2}} \frac{r^{n+1}}{|s|^{2}} d r d s \\
& =\frac{n \alpha(n)}{n+2} \int_{0}^{\frac{1}{4 \pi}} \frac{(2 n)^{(n+2) / 2}\left(s \log \frac{1}{4 \pi s}\right)^{(n+2) / 2}}{|s|^{2}} d s \\
& =\frac{n \alpha(n)(2 n)^{(n+2) / 2}}{n+2} \int_{0}^{\frac{1}{4 \pi}} s^{\frac{n}{2}-1}\left(\log \frac{1}{4 \pi s}\right)^{\frac{n}{2}+1} d s \\
& =\frac{n \alpha(n)(2 n)^{\frac{n}{2}+1}}{(n+2)(4 \pi)^{\frac{n}{2}}} \int_{0}^{1} t^{\frac{n}{2}-1}\left(\log \frac{1}{t}\right)^{\frac{n}{2}+1} d t
\end{aligned}
$$

where we make the change of variable $t=4 \pi s$ to obtain the ultimate equality. The integral factor in the above expression should remind you of the Gamma function. Indeed, the second trick is to use the identities

$$
\lambda^{-z} \Gamma(z)=\int_{0}^{1} t^{\lambda-1}\left(\log \frac{1}{t}\right)^{z-1} d t, \quad \Gamma(z+1)=z \Gamma(z)
$$

to obtain

$$
\begin{aligned}
\iint_{E(1)} \frac{|y|^{2}}{|s|^{2}} d y d s & =\frac{n \alpha(n)(2 n)^{\frac{n}{2}+1}}{(n+2)(4 \pi)^{\frac{n}{2}}}\left(\frac{n}{2}\right)^{-\frac{n}{2}-2} \Gamma\left(\frac{n}{2}+2\right) \\
& =\frac{n \alpha(n)(2 n)^{\frac{n}{2}+1}}{(n+2)(4 \pi)^{\frac{n}{2}}}\left(\frac{n}{2}\right)^{-\frac{n}{2}-2}\left(\frac{n}{2}+1\right) \Gamma\left(\frac{n}{2}+1\right) \\
& =\frac{2 \cdot 4^{\frac{n}{2}+1} n^{\frac{n}{2}+2} \alpha(n)(n+2)}{2(n+2)(4 \pi)^{\frac{n}{2}} n^{\frac{n}{2}+2}} \Gamma\left(\frac{n}{2}+1\right) \\
& =4 \cdot \frac{\alpha(n)}{\pi^{\frac{n}{2}}} \Gamma\left(\frac{n}{2}+1\right)=4
\end{aligned}
$$

Interestingly, this weighted volume is independent of the dimension n.
If you have another way of computing this integral, please share!

