Boundary Mean Value Property for Heat Equation
Matt Rosenzweig

The “heat ball” of radius r > 0 centered at (x,t) € R™ x R is defined as the set
E(z,t;r) :==q(y,s) € R xR.sft,tb(x—y,t—s)fT—n

where ® is the heat kernel ) )
|z—y|
(b — t — - e 4(t—s)

(‘T y7 S) (47T(t_3))n/2e

The heat ball is of interest because it is used as the domain of integration to prove a mean value property
(MVP) for (classical) solutions of the heat equation d;u — Au = 0 on some bounded open subset U C R".

The formulation of the MVP I learned, which is from [Evans|, uses the fact that volume of the unit heat
ball E(1) := E(0,0;1) with respect to the weight |y|* /|s|* is 4. The author, however, omits the details
of the computation as they are an exercise in integration. Still, I do not think it is obvious to the general
reader—and it certainly wasn’t to me-that
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If you have read my “About Me” section, you know that I like to work out the details, which we will do now.
The first trick to computing this integral is to write the integral as
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and recognize that the inner integral lends itself to computation in polar coordinates. Making the change of
variable ¥y = rw, where w € S"~1, we obtain
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where we make the change of variable ¢ = 47s to obtain the ultimate equality. The integral factor in the
above expression should remind you of the Gamma function. Indeed, the second trick is to use the identities
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to obtain ) "
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Interestingly, this weighted volume is independent of the dimension n.
If you have another way of computing this integral, please share!



