L^p Spaces for 0

Matt Rosenzweig

Contents

1	L^p S	Spaces for 0	1
	1.1	Complete Quasi-Normed Space	1
	1.2	Inequalities	2
	1.3	Day's theorem	3
	1.4	Non-Normability	4

1 L^p Spaces for 0

1.1 Complete Quasi-Normed Space

Lemma 1. If $p \in (0,1)$ and $a, b \ge 0$, then

$$(a+b)^p \le a^p + b^p$$

with equality if and only if either a or b is zero.

Proof. Define a function $f(t) := (1+t)^p - 1 - t^p$ for $t \ge 0$. Then $f'(t) = p(1+t)^{p-1} - pt^{p-1} < 0$ for all $t \in (0,\infty)$. Since f(0) = 0, it follows that f(t) < 0 on $(0,\infty)$. If $a, b \ne 0$, then substituting $t = \frac{a}{b}$,

$$\left(1+\frac{a}{b}\right)^p - 1 - \left(\frac{a}{b}\right)^p < 0 \iff \left(\frac{a+b}{b}\right)^p - 1 - \left(\frac{a}{b}\right)^p < 0 \iff (a+b)^p - (a^p+b^p) < 0$$

The equality criterion is obvious from the fact that f is strictly decreasing on $(0, \infty)$.

Recall that a pair $(X, \|\cdot\|)$, consisting of a (real or complex) vector space X and a function $\|\cdot\| : X \to \mathbb{R}^{\geq 0}$ satisfying $\|\lambda x\| = |\lambda| \|x\|$, is a quasinormed space, if there exists $K \geq 1$ such that

$$||x + y|| \le K(||x|| + ||y||) \quad \forall x, y \in X$$

Proposition 2. For $0 , <math>(L^p(X, \mu), \|\cdot\|_{L^p})$ is a complete quasinormed space.

Proof. We can define a distance function on $L^p(X,\mu)$ by

$$d(f,g) := \|f - g\|_{L^p}^p = \int_X |f - g|^p \, d\mu$$

The only metric axiom which isn't obvious is the triangle inequality. Applying the preceding lemma, for all $f, g, h \in L^p(X, \mu)$,

$$d(f,g) + d(g,h) = \int_X \left(|f-g|^p + |g-h|^p \right) d\mu \ge \int_X \left(|f-g| + |g-h| \right)^p d\mu \ge \int_X |f-h|^p d\mu = d(f,h)$$

Since $||f_n - f_m||_{L^p} \to 0, n, m \to \infty \iff d(f_n, f_m) \to 0, n, m \to \infty$ by the continuity of the maps $x \mapsto x^p$ and $x \mapsto x^{\frac{1}{p}}$, to show that d is a complete metric, it suffices to show that given a sequence $(f_n)_{n=1}^{\infty}$,

$$||f_n - f_m||_{L^p}^p \to 0, n, m \to \infty \Rightarrow \exists f \in L^p, ||f_n - f||_{L^p}^p \to 0, n \to \infty$$

Let $(f_n)_{n=1}^{\infty}$ be such a sequence. Then we can construct a subsequence $(f_{n_k})_{k\in\mathbb{N}}$ such that $\|f_{n_k} - f_{n_{k+1}}\|_{L^p}^p \leq \frac{1}{2^k}$. Define

$$f = f_{n_1} + \sum_{k=1}^{\infty} \left(f_{n_{k+1}} - f_{n_k} \right)$$

Since

$$\left\|\sum_{k=1}^{N} \left(f_{n_{k+1}} - f_{n_k}\right)\right\|_{L^p}^p \le \sum_{k=1}^{N} \left\|f_{n_{k+1}} - f_{n_k}\right\|_{L^p}^p \le \sum_{k=1}^{N} \frac{1}{2^k} \le 1 \ \forall N \in \mathbb{N}$$

it follows from the monotone convergence theorem, $|f_{n_1}| + \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}| \in L^p(X, \mu)$. Hence, by the Lebesgue dominated convergence theorem, $f \in L^p(X, \mu)$.

$$f_1 + \sum_{k=1}^N \left(f_{n_{k+1}} - f_{n_k} \right) = f_{n_{N+1}} \Rightarrow \lim_{k \to \infty} f_{n_k} = f$$

Hence, $(f_n)_{n=1}^{\infty}$ is Cauchy with a convergent subsequence and therefore $||f_n - f||_{L^p}^p \to 0$, as $n \to \infty$.

1.2 Inequalities

Proposition 3. (Reverse Hölder's) Let $q \in (0,1)$. For r < 0 and g > 0 $\mu - a.e.$, define $||g||_{L^r} := ||g^{-1}||_{L^{|r|}}^{-1}$. Then for $f \ge 0$ and g > 0 $\mu - a.e.$, we have that

$$\|fg\|_{L^1} \ge \|f\|_{L^q} \, \|g\|_{L^q}$$

where $\frac{1}{q} + \frac{1}{q'} = 1$.

Proof. If $fg \notin L^1(X,\mu)$ (i.e. $\|fg\|_{L^1} = \infty$) or $g^{-1} \notin L^{q'}(X,\mu)$, then the inequality is trivial. So assume otherwise. Since $q \in (0,1)$ and $1 = \frac{1}{q} + \frac{1}{q'}$, we have that q' < 0 and

$$\frac{1}{q} = \frac{1}{1} + \frac{1}{|q'|}$$

By Hölder's inequality applied to fg and $g^{-1} \in L^{|q'|}$,

$$\|f\|_{L^{q}} = \|fgg^{-1}\|_{L^{q}} \le \|fg\|_{L^{1}} \|g^{-1}\|_{L^{|q'|}} \Rightarrow \|f\|_{L^{q}} \|g\|_{L^{q'}} = \|f\|_{L^{q}} \|g^{-1}\|_{L^{|q'|}} \le \|fg\|_{L^{1}}$$

Proposition 4. (Reverse Minkowski's) Let $f_1, \dots, f_N \in L^p(X, \mu)$, where 0 Then

$$\sum_{j=1}^{N} \|f_{j}\|_{L^{p}} \leq \left\|\sum_{j=1}^{N} |f_{j}|\right\|_{L^{p}}$$

Proof. By induction it suffices to consider the case N = 2. If $|||f_1| + |f_2|||_{L^p} = \infty$, then the stated inequality is trivially true, so assume otherwise. Furthermore, if either f_1 or f_2 are zero $\mu - .a.e$, then the inequality is also trivial, so assume otherwise. By the reverse Hölder's inequality,

$$\begin{aligned} \||f_1| + |f_2|\|_{L^p}^p &= \int_X \||f_1| + |f_2||^p \, dx = \int_X |f_1| \, ||f_1| + |f_2||^{p-1} \, dx + \int_X |f_2| \, ||f_1| + |f_2||^{p-1} \, dx \\ &\geq \|f_1\|_{L^p} \, \|(|f_1| + |f_2|)^{p-1}\|_{L^{\frac{p}{p-1}}} + \|f_2\|_{L^p} \, \|(|f_1| + |f_2|)^{p-1}\|_{L^{\frac{p}{p-1}}} \\ &= (\|f_1\|_{L^p} + \|f_2\|_{L^p}) \, \||f_1| + |f_2|\|_{L^p}^{p-1} \end{aligned}$$

Dividing both sides by $||f_1 + f_2||_{L^p}^{p-1}$ yields the stated inequality.

The preceding proposition shows that $(L^p(X,\mu), \|\cdot\|_{L^p})$ is not a normed space when 0 . $Lemma 5. Suppose <math>1 \le \theta < \infty$. Then for $a_1, \cdots, a_N \in \mathbb{R}^{\ge 0}$,

$$\left(\sum_{j=1}^{N} a_j\right)^{\theta} \le N^{\theta-1} \sum_{j=1}^{N} a_j^{\theta}$$

Proof. Since $\theta \ge 1$, the function $f(x) = x^{\theta}$ is convex. Hence,

$$\left(\sum_{j=1}^{N} a_j\right)^{\theta} = f\left(\frac{\sum_{j=1}^{N} N a_j}{N}\right) \le \frac{1}{N} \sum_{j=1}^{N} f(Na_j) = N^{\theta-1} \sum_{j=1}^{N} a_j^{\theta}$$

Proposition 6. For 0 ,

$$\left\|\sum_{j=1}^{N} f_{j}\right\|_{L^{p}} \leq N^{\frac{1-p}{p}} \sum_{j=1}^{N} \|f_{j}\|_{L^{p}}$$

Furthermore, $N^{\frac{1-p}{p}}$ is the best possible constant.

Proof. If $||f_j||_{L^p} = \infty$ for some j, then the inequality trivially holds, so assume otherwise. Since $\frac{1}{p} > 1$, by the preceding lemma,

$$\left\|\sum_{j=1}^{N} f_{j}\right\|_{L^{p}} = \left(\int_{X} \left|\sum_{j=1}^{N} f_{j}\right|^{p} dx\right)^{\frac{1}{p}} \le \left(\sum_{j=1}^{N} \int_{X} |f_{j}|^{p} dx\right)^{\frac{1}{p}} \le N^{\frac{1}{p}-1} \sum_{j=1}^{N} \left(\int_{X} |f_{j}|^{p} dx\right)^{\frac{1}{p}} = N^{\frac{1-p}{p}} \sum_{j=1}^{N} \|f_{j}\|_{L^{p}}$$

To see that $N^{\frac{1-p}{p}}$ is the best possible constant, let E be a measurable set such that $\mu(E) = \alpha < \infty$, and set $E_j := E$ and $f_j := \mathbf{1}_E$ for $1 \le j \le N$. Then

$$\left\|\sum_{j=1}^{N} f_{j}\right\|_{L^{p}} = \left(\sum_{j=1}^{N} \mu(E_{j})\right)^{\frac{1}{p}} = (N\alpha)^{\frac{1}{p}} = N^{\frac{1-p}{p}} \left(N\alpha^{\frac{1}{p}}\right) = N^{\frac{1-p}{p}} \sum_{j=1}^{N} \mu(E_{j})^{\frac{1}{p}} = N^{\frac{1-p}{p}} \sum_{j=1}^{N} \|f_{j}\|_{L^{p}}$$

1.3 Day's theorem

Lemma 7. Let (X, \mathcal{A}, μ) be a measure space with the property that given any $f \in L^p(X, \mu)$ for $p \in (0, 1)$, the functional

$$\mathcal{A} \to \mathbb{R}, E \mapsto \int_E |f|^p \, d\mu$$

assumes all values between 0 and $||f||_{L^p}^p$. Then $L^p(X,\mu)$, with $0 , contains no convex open sets, other than <math>\emptyset$ and $L^p(X,\mu)$.

Proof. Let Ω be a nonempty convex open neighborhood of the origin in $L^p(X)$ and $f \in L^p(X)$ be arbitrary. Since Ω is open, there exists a ball B_{δ} about the origin contained in Ω . Choose $n \in \mathbb{Z}^{\geq 1}$ such that $\frac{\|f\|_{L^p}^p}{n^{1-p}} \leq \delta$ (i.e. $nf \in B_{n\delta}$). Note that we can choose such a n precisely because $p \in (0, 1)$. Using the intermediate value hypothesis for the measure space, there exists a measurable set E_1 such that

$$\int_{E_1} |f|^p \, d\mu = \frac{1}{n} \int_X |f|^p \, d\mu = \frac{\|f\|_{L^p}^p}{n}$$

Repeating the argument for $f_1 = f \mathbf{1}_{E_1^c}$ and apply induction, we obtain a partition $\{E_1, \dots, E_n\}$ of X into disjoint measurable subsets such that $\int_{E_j} |f|^p = \frac{\|f\|_{L^p}^p}{n} \quad \forall j = 1, \dots, n$. Define $h_j := nf \mathbf{1}_{E_j}$. Then by our choice of n,

$$\int_{X} |h_{j}|^{p} d\mu = \int_{E_{j}} n^{p} |f|^{p} d\mu = \frac{1}{n^{1-p}} \int_{X} |f|^{p} d\mu \le \delta$$

Hence, $h_j \in B_{\delta} \subset \Omega \ \forall j = 1, \cdots, n$. By convexity,

$$f = \frac{h_1 + \dots + h_n}{n} \in \Omega$$

Since $f \in L^p(X, \mu)$ was arbitrary, we obtain that $\Omega = L^p(X, \mu)$.

Corollary 8. With (X, \mathcal{A}, μ) as above, the natural topology for $L^p(X, \mu)$, with 0 , is not locally convex.

The following result, originally proven by M.M. Day, shows that the Hahn-Banach theorem fails for $L^p(X, \mu)$, when 0 . Specifically, the Hahn-Banach theorem may fail when we only assume the underlying space is quasi-normed.

3

Theorem 9. (M.M. Day) Let $p \in (0,1)$ and let $T : L^p(X,\mu) \to Y$ be a continuous linear mapping of $L^p(X,\mu)$ into a locally convex T_0 space Y (i.e. singletons are closed). Then T is the zero map. In particular, $L^p(X,\mu)^* = \{0\}$.

Proof. Let T be such a map, and let \mathcal{B} be a convex local base for Y at the origin. Let $W \in \mathcal{B}$. Then $T^{-1}(W)$ is a nonempty open convex subset of $L^p(X,\mu)$, hence by the preceding lemma, $T^{-1}(W) = L^p(X,\mu)$. Hence, $T(L^p(X,\mu)) \subset W$ for all $W \in \mathcal{B}$. I claim that $\bigcap_{W \in \mathcal{B}} W = \{0\}$. Assume the contrary, and let $x \neq 0$ be in the intersection. Since singletons are closed in Y, $Y \setminus \{x\}$ is an open neighborhood of 0. Hence, $\bigcap_{W \in \mathcal{B}} W \subset (Y \setminus \{x\})$, which is a contradiction. We conclude that $T(L^p(X,\mu)) = \{0\} \iff T = 0$.

1.4 Non-Normability

One might ask if $L^p(X,\mu), 0 , is normable for an arbitrary measure space <math>(X, \mathcal{A}, \mu)$. The following example shows that it is not, even for a nice measure space.

Proposition 10. Let $(f_n)_{n=1}^{\infty}$ be a sequence in $L^p([0,1], \mathcal{L}, \lambda)$, where \mathcal{L} is the Lebesgue σ -algebra and λ is the Lebesgue measure on [0,1]. Then there does not exist a norm $\|\cdot\|$ on $L^p([0,1])$ such that for any sequence $(f_n)_{n\in\mathbb{N}} \subset L^p([0,1]), f_n \to 0$ in $L^p \Rightarrow \|f_n\| \to 0, n \to \infty$.

Proof. Suppose such a norm $\|\cdot\|$ exists. I claim that there exists a positive constant $C < \infty$ such that $\|f\| \leq C \|f\|_{L^p} \quad \forall f \in L^p([0,1])$. Indeed, the map $L^p([0,1]) \to \mathbb{R}, f \mapsto \|f\|$ is evidently continuous. Hence, there exists $\delta > 0$ such that $\|f\|_{L^p} < \delta \Rightarrow \|f\| \leq 1$. Then $\forall f \in L^p([0,1]), \frac{\alpha \delta f}{\|f\|_{L^p}} \in B_{\delta}$, where $0 < |\alpha| < 1$. Hence,

$$\left\|\frac{\alpha\delta f}{\|f\|_{L^p}}\right\| \le 1 \Rightarrow \|f\| \le \frac{1}{\alpha\delta} \|f\|_{L^p}$$

Letting $\alpha \to 1$, we see that the inequality holds for $C = \frac{1}{\delta}$. Choose $C = \inf \{K : \|f\| \le K \|f\|_{L^p} \quad \forall f \in L^p([0,1])\}$ (Note that we do not exclude the possibility that C = 0). By the intermediate value theorem, there exists $c \in (0,1)$ such that

$$\int_{0}^{c} |f|^{p} d\lambda = \int_{c}^{1} |f|^{p} d\lambda = \frac{1}{2} \int_{0}^{1} |f|^{p} d\lambda$$

Set $g = f\chi_{[0,c]}$ and $h = f\chi_{(c,1]}$. Then f = g + h and $\|g\|_{L^p} = \|h\|_{L^p} = 2^{-\frac{1}{p}} \|f\|_{L^p}$. By the triangle inequality,

$$\|f\| \le \|g\| + \|h\| \le C \left(\|g\|_{L^p} + \|h\|_{L^p}\right) = \frac{C}{2^{\frac{1}{p}-1}} \|f\|_{L^1}$$

Since $p \in (0,1), \frac{C}{2^{\frac{1}{p}-1}} \le C \Rightarrow C = 0 \Rightarrow ||f|| = 0 \ \forall f \in L^p(X,\mu)$, which contradicts that $||\cdot||$ is a norm. \Box

Remark 11. In fact, the non-normability of $L^p([0,1])$, when $0 , follows from M.M. Day's theorem. If <math>L^p([0,1])$ were normable, then the Hahn-Banach theorem would hold, contradicting that $L^p([0,1])^* = \{0\}$. So we have the more general assertion that given any measure space (X, \mathcal{A}, μ) which satisfies the hypotheses of Day's theorem, $L^p(X, \mu)$ is non-normable.