L^{p} Spaces for $0<p<1$

Matt Rosenzweig

Contents

$1 L^{p}$ Spaces for $0<p<1 \quad 1$
1.1 Complete Quasi-Normed Space . 1
1.2 Inequalities . 2
1.3 Day's theorem . 3
1.4 Non-Normability . 4

$1 \quad L^{p}$ Spaces for $0<p<1$

1.1 Complete Quasi-Normed Space

Lemma 1. If $p \in(0,1)$ and $a, b \geq 0$, then

$$
(a+b)^{p} \leq a^{p}+b^{p}
$$

with equality if and only if either a or b is zero.
Proof. Define a function $f(t):=(1+t)^{p}-1-t^{p}$ for $t \geq 0$. Then $f^{\prime}(t)=p(1+t)^{p-1}-p t^{p-1}<0$ for all $t \in(0, \infty)$. Since $f(0)=0$, it follows that $f(t)<0$ on $\left(0, \infty\right.$. If $a, b \neq 0$, then substituting $t=\frac{a}{b}$,

$$
\left(1+\frac{a}{b}\right)^{p}-1-\left(\frac{a}{b}\right)^{p}<0 \Longleftrightarrow\left(\frac{a+b}{b}\right)^{p}-1-\left(\frac{a}{b}\right)^{p}<0 \Longleftrightarrow(a+b)^{p}-\left(a^{p}+b^{p}\right)<0
$$

The equality criterion is obvious from the fact that f is strictly decreasing on $(0, \infty)$.
Recall that a pair $(X,\|\cdot\|)$, consiting of a (real or complex) vector space X and a function $\|\cdot\|: X \rightarrow \mathbb{R} \geq 0$ satisfying $\|\lambda x\|=|\lambda|\|x\|$, is a quasinormed space, if there exists $K \geq 1$ such that

$$
\|x+y\| \leq K(\|x\|+\|y\|) \quad \forall x, y \in X
$$

Proposition 2. For $0<p<\infty,\left(L^{p}(X, \mu),\|\cdot\|_{L^{p}}\right)$ is a complete quasinormed space.
Proof. We can define a distance function on $L^{p}(X, \mu)$ by

$$
d(f, g):=\|f-g\|_{L^{p}}^{p}=\int_{X}|f-g|^{p} d \mu
$$

The only metric axiom which isn't obvious is the triangle inequality. Applying the preceding lemma, for all $f, g, h \in L^{p}(X, \mu)$,

$$
d(f, g)+d(g, h)=\int_{X}\left(|f-g|^{p}+|g-h|^{p}\right) d \mu \geq \int_{X}(|f-g|+|g-h|)^{p} d \mu \geq \int_{X}|f-h|^{p} d \mu=d(f, h)
$$

Since $\left\|f_{n}-f_{m}\right\|_{L^{p}} \rightarrow 0, n, m \rightarrow \infty \Longleftrightarrow d\left(f_{n}, f_{m}\right) \rightarrow 0, n, m \rightarrow \infty$ by the continuity of the maps $x \mapsto x^{p}$ and $x \mapsto x^{\frac{1}{p}}$, to show that d is a complete metric, it suffices to show that given a sequence $\left(f_{n}\right)_{n=1}^{\infty}$,

$$
\left\|f_{n}-f_{m}\right\|_{L^{p}}^{p} \rightarrow 0, n, m \rightarrow \infty \Rightarrow \exists f \in L^{p},\left\|f_{n}-f\right\|_{L^{p}}^{p} \rightarrow 0, n \rightarrow \infty
$$

Let $\left(f_{n}\right)_{n=1}^{\infty}$ be such a sequence. Then we can construct a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $\left\|f_{n_{k}}-f_{n_{k+1}}\right\|_{L^{p}}^{p} \leq \frac{1}{2^{k}}$. Define

$$
f=f_{n_{1}}+\sum_{k=1}^{\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)
$$

Since

$$
\left\|\sum_{k=1}^{N}\left(f_{n_{k+1}}-f_{n_{k}}\right)\right\|_{L^{p}}^{p} \leq \sum_{k=1}^{N}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{L^{p}}^{p} \leq \sum_{k=1}^{N} \frac{1}{2^{k}} \leq 1 \forall N \in \mathbb{N}
$$

it follows from the monotone convergence theorem, $\left|f_{n_{1}}\right|+\sum_{k=1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right| \in L^{p}(X, \mu)$. Hence, by the Lebesgue dominated convergence theorem, $f \in L^{p}(X, \mu)$.

$$
f_{1}+\sum_{k=1}^{N}\left(f_{n_{k+1}}-f_{n_{k}}\right)=f_{n_{N+1}} \Rightarrow \lim _{k \rightarrow \infty} f_{n_{k}}=f
$$

Hence, $\left(f_{n}\right)_{n=1}^{\infty}$ is Cauchy with a convergent subsequence and therefore $\left\|f_{n}-f\right\|_{L^{p}}^{p} \rightarrow 0$, as $n \rightarrow \infty$.

1.2 Inequalities

Proposition 3. (Reverse Hölder's) Let $q \in(0,1)$. For $r<0$ and $g>0 \mu-$ a.e., define $\|g\|_{L^{r}}:=\left\|g^{-1}\right\|_{L^{|r|}}^{-1}$. Then for $f \geq 0$ and $g>0 \mu$-a.e., we have that

$$
\|f g\|_{L^{1}} \geq\|f\|_{L^{q}}\|g\|_{L^{q^{\prime}}}
$$

where $\frac{1}{q}+\frac{1}{q^{\prime}}=1$.
Proof. If $f g \notin L^{1}(X, \mu)$ (i.e. $\left.\|f g\|_{L^{1}}=\infty\right)$ or $g^{-1} \notin L^{q^{\prime}}(X, \mu)$, then the inequality is trivial. So assume otherwise. Since $q \in(0,1)$ and $1=\frac{1}{q}+\frac{1}{q^{\prime}}$, we have that $q^{\prime}<0$ and

$$
\frac{1}{q}=\frac{1}{1}+\frac{1}{\left|q^{\prime}\right|}
$$

By Hölder's inequality applied to $f g$ and $g^{-1} \in L^{\left|q^{\prime}\right|}$,

$$
\|f\|_{L^{q}}=\left\|f g g^{-1}\right\|_{L^{q}} \leq\|f g\|_{L^{1}}\left\|g^{-1}\right\|_{L^{\left|q^{\prime}\right|}} \Rightarrow\|f\|_{L^{q}}\|g\|_{L^{q^{\prime}}}=\|f\|_{L^{q}}\left\|g^{-1}\right\|_{L^{\mid q^{\prime}} \mid} \leq\|f g\|_{L^{1}}
$$

Proposition 4. (Reverse Minkowski's) Let $f_{1}, \cdots, f_{N} \in L^{p}(X, \mu)$, where $0<p<1$ Then

$$
\sum_{j=1}^{N}\left\|f_{j}\right\|_{L^{p}} \leq\left\|\sum_{j=1}^{N}\left|f_{j}\right|\right\|_{L^{p}}
$$

Proof. By induction it suffices to consider the case $N=2$. If $\left\|\left|f_{1}\right|+\left|f_{2}\right|\right\|_{L^{p}}=\infty$, then the stated inequality is trivially true, so assume otherwise. Furthermore, if either f_{1} or f_{2} are zero $\mu-$ a.e, then the inequality is also trivial, so assume otherwise. By the reverse Hölder's inequality,

$$
\begin{aligned}
\left\|\left|f_{1}\right|+\left|f_{2}\right|\right\|_{L^{p}}^{p}=\int_{X} \| f_{1}\left|+\left|f_{2}\right|^{p} d x\right. & =\int_{X}\left|f_{1}\right|\left\|f_{1}\left|+\left|f_{2}\left\|^{p-1} d x+\int_{X}\left|f_{2}\right|\right\| f_{1}\right|+\right| f_{2}\right\|^{p-1} d x \\
& \geq\left\|f_{1}\right\|_{L^{p}}\left\|\left(\left|f_{1}\right|+\left|f_{2}\right|\right)^{p-1}\right\|_{L^{\frac{p}{p-1}}}+\left\|f_{2}\right\|_{L^{p}}\left\|\left(\left|f_{1}\right|+\left|f_{2}\right|\right)^{p-1}\right\|_{L^{\frac{p}{p-1}}} \\
& =\left(\left\|f_{1}\right\|_{L^{p}}+\left\|f_{2}\right\|_{L^{p}}\right)\left\|\left|f_{1}\right|+\left|f_{2}\right|\right\|_{L^{p}}^{p-1}
\end{aligned}
$$

Dividing both sides by $\left\|f_{1}+f_{2}\right\|_{L^{p}}^{p-1}$ yields the stated inequality.
The preceding proposition shows that $\left(L^{p}(X, \mu),\|\cdot\|_{L^{p}}\right)$ is not a normed space when $0<p<\infty$.
Lemma 5. Suppose $1 \leq \theta<\infty$. Then for $a_{1}, \cdots, a_{N} \in \mathbb{R}^{\geq 0}$,

$$
\left(\sum_{j=1}^{N} a_{j}\right)^{\theta} \leq N^{\theta-1} \sum_{j=1}^{N} a_{j}^{\theta}
$$

Proof. Since $\theta \geq 1$, the function $f(x)=x^{\theta}$ is convex. Hence,

$$
\left(\sum_{j=1}^{N} a_{j}\right)^{\theta}=f\left(\frac{\sum_{j=1}^{N} N a_{j}}{N}\right) \leq \frac{1}{N} \sum_{j=1}^{N} f\left(N a_{j}\right)=N^{\theta-1} \sum_{j=1}^{N} a_{j}^{\theta}
$$

Proposition 6. For $0<p<1$,

$$
\left\|\sum_{j=1}^{N} f_{j}\right\|_{L^{p}} \leq N^{\frac{1-p}{p}} \sum_{j=1}^{N}\left\|f_{j}\right\|_{L^{p}}
$$

Furthermore, $N^{\frac{1-p}{p}}$ is the best possible constant.
Proof. If $\left\|f_{j}\right\|_{L^{p}}=\infty$ for some j, then the inequality trivially holds, so assume otherwise. Since $\frac{1}{p}>1$, by the preceding lemma,

$$
\left\|\sum_{j=1}^{N} f_{j}\right\|_{L^{p}}=\left(\int_{X}\left|\sum_{j=1}^{N} f_{j}\right|^{p} d x\right)^{\frac{1}{p}} \leq\left(\sum_{j=1}^{N} \int_{X}\left|f_{j}\right|^{p} d x\right)^{\frac{1}{p}} \leq N^{\frac{1}{p}-1} \sum_{j=1}^{N}\left(\int_{X}\left|f_{j}\right|^{p} d x\right)^{\frac{1}{p}}=N^{\frac{1-p}{p}} \sum_{j=1}^{N}\left\|f_{j}\right\|_{L^{p}}
$$

To see that $N^{\frac{1-p}{p}}$ is the best possible constant, let E be a measurable set such that $\mu(E)=\alpha<\infty$, and set $E_{j}:=E$ and $f_{j}:=\mathbf{1}_{E}$ for $1 \leq j \leq N$. Then

$$
\left\|\sum_{j=1}^{N} f_{j}\right\|_{L^{p}}=\left(\sum_{j=1}^{N} \mu\left(E_{j}\right)\right)^{\frac{1}{p}}=(N \alpha)^{\frac{1}{p}}=N^{\frac{1-p}{p}}\left(N \alpha^{\frac{1}{p}}\right)=N^{\frac{1-p}{p}} \sum_{j=1}^{N} \mu\left(E_{j}\right)^{\frac{1}{p}}=N^{\frac{1-p}{p}} \sum_{j=1}^{N}\left\|f_{j}\right\|_{L^{p}}
$$

1.3 Day's theorem

Lemma 7. Let (X, \mathcal{A}, μ) be a measure space with the property that given any $f \in L^{p}(X, \mu)$ for $p \in(0,1)$, the functional

$$
\mathcal{A} \rightarrow \mathbb{R}, E \mapsto \int_{E}|f|^{p} d \mu
$$

assumes all values between 0 and $\|f\|_{L^{p}}^{p}$. Then $L^{p}(X, \mu)$, with $0<p<1$, contains no convex open sets, other than \emptyset and $L^{p}(X, \mu)$.
Proof. Let Ω be a nonempty convex open neighborhood of the origin in $L^{p}(X)$ and $f \in L^{p}(X)$ be arbitrary. Since Ω is open, there exists a ball B_{δ} about the origin contained in Ω. Choose $n \in \mathbb{Z}^{\geq 1}$ such that $\frac{\|f\|_{L_{p}^{p}}^{p}}{n^{1-p}} \leq \delta$ (i.e. $n f \in B_{n \delta}$). Note that we can choose such a n precisely because $p \in(0,1)$. Using the intermediate value hypothesis for the measure space, there exists a measurable set E_{1} such that

$$
\int_{E_{1}}|f|^{p} d \mu=\frac{1}{n} \int_{X}|f|^{p} d \mu=\frac{\|f\|_{L^{p}}^{p}}{n}
$$

Repeating the argument for $f_{1}=f \mathbf{1}_{E_{1}^{c}}$ and apply induction, we obtain a partition $\left\{E_{1}, \cdots, E_{n}\right\}$ of X into disjoint measurable subsets such that $\int_{E_{j}}|f|^{p}=\frac{\|f\|_{L p}^{p}}{n} \forall j=1, \cdots, n$. Define $h_{j}:=n f \mathbf{1}_{E_{j}}$. Then by our choice of n,

$$
\int_{X}\left|h_{j}\right|^{p} d \mu=\int_{E_{j}} n^{p}|f|^{p} d \mu=\frac{1}{n^{1-p}} \int_{X}|f|^{p} d \mu \leq \delta
$$

Hence, $h_{j} \in B_{\delta} \subset \Omega \forall j=1, \cdots, n$. By convexity,

$$
f=\frac{h_{1}+\cdots+h_{n}}{n} \in \Omega
$$

Since $f \in L^{p}(X, \mu)$ was arbitrary, we obtain that $\Omega=L^{p}(X, \mu)$.
Corollary 8. With (X, \mathcal{A}, μ) as above, the natural topology for $L^{p}(X, \mu)$, with $0<p<1$, is not locally convex.
The following result, originally proven by M.M. Day, shows that the Hahn-Banach theorem fails for $L^{p}(X, \mu)$, when $0<p<1$. Specifically, the Hahn-Banach theorem may fail when we only assume the underlying space is quasi-normed.

Theorem 9. (M.M. Day) Let $p \in(0,1)$ and let $T: L^{p}(X, \mu) \rightarrow Y$ be a continuous linear mapping of $L^{p}(X, \mu)$ into a locally convex T_{0} space Y (i.e. singletons are closed). Then T is the zero map. In particular, $L^{p}(X, \mu)^{*}=\{0\}$.

Proof. Let T be such a map, and let \mathcal{B} be a convex local base for Y at the origin. Let $W \in \mathcal{B}$. Then $T^{-1}(W)$ is a nonempty open convex subset of $L^{p}(X, \mu)$, hence by the preceding lemma, $T^{-1}(W)=L^{p}(X, \mu)$. Hence, $T\left(L^{p}(X, \mu)\right) \subset W$ for all $W \in \mathcal{B}$. I claim that $\bigcap_{W \in \mathcal{B}} W=\{0\}$. Assume the contrary, and let $x \neq 0$ be in the intersection. Since singletons are closed in $Y, Y \backslash\{x\}$ is an open neighborhood of 0 . Hence, $\bigcap_{W \in \mathcal{B}} W \subset(Y \backslash\{x\})$, which is a contradiction. We conclude that $T\left(L^{p}(X, \mu)\right)=\{0\} \Longleftrightarrow T=0$.

1.4 Non-Normability

One might ask if $L^{p}(X, \mu), 0<p<1$, is normable for an arbitrary measure space (X, \mathcal{A}, μ). The following example shows that it is not, even for a nice measure space.

Proposition 10. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in $L^{p}([0,1], \mathcal{L}, \lambda)$, where \mathcal{L} is the Lebesgue σ-algebra and λ is the Lebesgue measure on $[0,1]$. Then there does not exist a norm $\|\cdot\|$ on $L^{p}([0,1])$ such that for any sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{p}([0,1]), f_{n} \rightarrow 0$ in $L^{p} \Rightarrow\left\|f_{n}\right\| \rightarrow 0, n \rightarrow \infty$.

Proof. Suppose such a norm $\|\cdot\|$ exists. I claim that there exists a positive constant $C<\infty$ such that $\|f\| \leq$ $C\|f\|_{L^{p}} \forall f \in L^{p}([0,1])$. Indeed, the map $L^{p}([0,1]) \rightarrow \mathbb{R}, f \mapsto\|f\|$ is evidently continuous. Hence, there exists $\delta>0$ such that $\|f\|_{L^{p}}<\delta \Rightarrow\|f\| \leq 1$. Then $\forall f \in L^{p}([0,1]), \frac{\alpha \delta f}{\|f\|_{L^{p}}} \in B_{\delta}$, where $0<|\alpha|<1$. Hence,

$$
\left\|\frac{\alpha \delta f}{\|f\|_{L^{p}}}\right\| \leq 1 \Rightarrow\|f\| \leq \frac{1}{\alpha \delta}\|f\|_{L^{p}}
$$

Letting $\alpha \rightarrow 1$, we see that the inequality holds for $C=\frac{1}{\delta}$. Choose $C=\inf \left\{K:\|f\| \leq K\|f\|_{L^{p}} \forall f \in L^{p}([0,1])\right\}$ (Note that we do not exclude the possibility that $C=0$). By the intermediate value theorem, there exists $c \in(0,1)$ such that

$$
\int_{0}^{c}|f|^{p} d \lambda=\int_{c}^{1}|f|^{p} d \lambda=\frac{1}{2} \int_{0}^{1}|f|^{p} d \lambda
$$

Set $g=f \chi_{[0, c]}$ and $h=f \chi_{(c, 1]}$. Then $f=g+h$ and $\|g\|_{L^{p}}=\|h\|_{L^{p}}=2^{-\frac{1}{p}}\|f\|_{L^{p}}$. By the triangle inequality,

$$
\|f\| \leq\|g\|+\|h\| \leq C\left(\|g\|_{L^{p}}+\|h\|_{L^{p}}\right)=\frac{C}{2^{\frac{1}{p}-1}}\|f\|_{L^{p}}
$$

Since $p \in(0,1), \frac{C}{2^{\frac{1}{p}-1}} \leq C \Rightarrow C=0 \Rightarrow\|f\|=0 \forall f \in L^{p}(X, \mu)$, which contradicts that $\|\cdot\|$ is a norm.
Remark 11. In fact, the non-normability of $L^{p}([0,1])$, when $0<p<1$, follows from M.M. Day's thoerem. If $L^{p}([0,1])$ were normable, then the Hahn-Banach theorem would hold, contradicting that $L^{p}([0,1])^{*}=\{0\}$. So we have the more general assertion that given any measure space (X, \mathcal{A}, μ) which satisfies the hypotheses of Day's theorem, $L^{p}(X, \mu)$ is non-normable.

