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1 Lp Spaces for 0 < p < 1

1.1 Complete Quasi-Normed Space

Lemma 1. If p ∈ (0, 1) and a, b ≥ 0, then

(a+ b)
p ≤ ap + bp

with equality if and only if either a or b is zero.

Proof. Define a function f(t) := (1+ t)p−1− tp for t ≥ 0. Then f ′(t) = p(1+ t)p−1−ptp−1 < 0 for all t ∈ (0,∞).
Since f(0) = 0, it follows that f(t) < 0 on (0,∞. If a, b 6= 0, then substituting t = a

b ,(
1 +

a

b

)p
− 1−

(a
b

)p
< 0⇐⇒

(
a+ b

b

)p
− 1−

(a
b

)p
< 0⇐⇒ (a+ b)

p − (ap + bp) < 0

The equality criterion is obvious from the fact that f is strictly decreasing on (0,∞).

Recall that a pair (X, ‖·‖), consiting of a (real or complex) vector space X and a function ‖·‖ : X → R≥0
satisfying ‖λx‖ = |λ| ‖x‖, is a quasinormed space, if there exists K ≥ 1 such that

‖x+ y‖ ≤ K (‖x‖+ ‖y‖) ∀x, y ∈ X

Proposition 2. For 0 < p <∞, (Lp(X,µ), ‖·‖Lp) is a complete quasinormed space.

Proof. We can define a distance function on Lp(X,µ) by

d(f, g) := ‖f − g‖pLp =

∫
X

|f − g|p dµ

The only metric axiom which isn’t obvious is the triangle inequality. Applying the preceding lemma, for all
f, g, h ∈ Lp(X,µ),

d(f, g) + d(g, h) =

∫
X

(|f − g|p + |g − h|p) dµ ≥
∫
X

(|f − g|+ |g − h|)p dµ ≥
∫
X

|f − h|p dµ = d(f, h)

Since ‖fn − fm‖Lp → 0, n,m → ∞ ⇐⇒ d(fn, fm) → 0, n,m → ∞ by the continuity of the maps x 7→ xp and

x 7→ x
1
p , to show that d is a complete metric, it suffices to show that given a sequence (fn)∞n=1,

‖fn − fm‖pLp → 0, n,m→∞⇒ ∃f ∈ Lp, ‖fn − f‖pLp → 0, n→∞

Let (fn)∞n=1 be such a sequence. Then we can construct a subsequence (fnk
)k∈N such that

∥∥fnk
− fnk+1

∥∥p
Lp ≤ 1

2k
.

Define

f = fn1 +

∞∑
k=1

(
fnk+1

− fnk

)
Since ∥∥∥∥∥

N∑
k=1

(
fnk+1

− fnk

)∥∥∥∥∥
p

Lp

≤
N∑
k=1

∥∥fnk+1
− fnk

∥∥p
Lp ≤

N∑
k=1

1

2k
≤ 1 ∀N ∈ N
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it follows from the monotone convergence theorem, |fn1 |+
∑∞
k=1

∣∣fnk+1
− fnk

∣∣ ∈ Lp(X,µ). Hence, by the Lebesgue
dominated convergence theorem, f ∈ Lp(X,µ).

f1 +

N∑
k=1

(
fnk+1

− fnk

)
= fnN+1

⇒ lim
k→∞

fnk
= f

Hence, (fn)∞n=1 is Cauchy with a convergent subsequence and therefore ‖fn − f‖pLp → 0, as n→∞.

1.2 Inequalities

Proposition 3. (Reverse Hölder’s) Let q ∈ (0, 1). For r < 0 and g > 0 µ − a.e., define ‖g‖Lr :=
∥∥g−1∥∥−1

L|r|
.

Then for f ≥ 0 and g > 0 µ− a.e., we have that

‖fg‖L1 ≥ ‖f‖Lq ‖g‖Lq′

where 1
q + 1

q′ = 1.

Proof. If fg /∈ L1(X,µ) (i.e. ‖fg‖L1 =∞) or g−1 /∈ Lq′(X,µ), then the inequality is trivial. So assume otherwise.
Since q ∈ (0, 1) and 1 = 1

q + 1
q′ , we have that q′ < 0 and

1

q
=

1

1
+

1

|q′|

By Hölder’s inequality applied to fg and g−1 ∈ L|q
′|,

‖f‖Lq =
∥∥fgg−1∥∥

Lq ≤ ‖fg‖L1

∥∥g−1∥∥
L|q′| ⇒ ‖f‖Lq ‖g‖Lq′ = ‖f‖Lq

∥∥g−1∥∥
L|q′| ≤ ‖fg‖L1

Proposition 4. (Reverse Minkowski’s) Let f1, · · · , fN ∈ Lp(X,µ), where 0 < p < 1 Then

N∑
j=1

‖fj‖Lp ≤

∥∥∥∥∥∥
N∑
j=1

|fj |

∥∥∥∥∥∥
Lp

Proof. By induction it suffices to consider the case N = 2. If ‖|f1|+ |f2|‖Lp = ∞, then the stated inequality is
trivially true, so assume otherwise. Furthermore, if either f1 or f2 are zero µ − .a.e, then the inequality is also
trivial, so assume otherwise. By the reverse Hölder’s inequality,

‖|f1|+ |f2|‖pLp =

∫
X

||f1|+ |f2||p dx =

∫
X

|f1| ||f1|+ |f2||p−1 dx+

∫
X

|f2| ||f1|+ |f2||p−1 dx

≥ ‖f1‖Lp

∥∥(|f1|+ |f2|)p−1
∥∥
L

p
p−1

+ ‖f2‖Lp

∥∥(|f1|+ |f2|)p−1
∥∥
L

p
p−1

= (‖f1‖Lp + ‖f2‖Lp) ‖|f1|+ |f2|‖p−1Lp

Dividing both sides by ‖f1 + f2‖p−1Lp yields the stated inequality.

The preceding proposition shows that (Lp(X,µ), ‖·‖Lp) is not a normed space when 0 < p <∞.

Lemma 5. Suppose 1 ≤ θ <∞. Then for a1, · · · , aN ∈ R≥0, N∑
j=1

aj

θ

≤ Nθ−1
N∑
j=1

aθj

Proof. Since θ ≥ 1, the function f(x) = xθ is convex. Hence, N∑
j=1

aj

θ

= f

(∑N
j=1Naj

N

)
≤ 1

N

N∑
j=1

f(Naj) = Nθ−1
N∑
j=1

aθj
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Proposition 6. For 0 < p < 1, ∥∥∥∥∥∥
N∑
j=1

fj

∥∥∥∥∥∥
Lp

≤ N
1−p
p

N∑
j=1

‖fj‖Lp

Furthermore, N
1−p
p is the best possible constant.

Proof. If ‖fj‖Lp = ∞ for some j, then the inequality trivially holds, so assume otherwise. Since 1
p > 1, by the

preceding lemma,∥∥∥∥∥∥
N∑
j=1

fj

∥∥∥∥∥∥
Lp

=

∫
X

∣∣∣∣∣∣
N∑
j=1

fj

∣∣∣∣∣∣
p

dx


1
p

≤

 N∑
j=1

∫
X

|fj |p dx

 1
p

≤ N
1
p−1

N∑
j=1

(∫
X

|fj |p dx
) 1

p

= N
1−p
p

N∑
j=1

‖fj‖Lp

To see that N
1−p
p is the best possible constant, let E be a measurable set such that µ (E) = α <∞, and set

Ej := E and fj := 1E for 1 ≤ j ≤ N . Then∥∥∥∥∥∥
N∑
j=1

fj

∥∥∥∥∥∥
Lp

=

 N∑
j=1

µ(Ej)

 1
p

= (Nα)
1
p = N

1−p
p

(
Nα

1
p

)
= N

1−p
p

N∑
j=1

µ(Ej)
1
p = N

1−p
p

N∑
j=1

‖fj‖Lp

1.3 Day’s theorem

Lemma 7. Let (X,A, µ) be a measure space with the property that given any f ∈ Lp(X,µ) for p ∈ (0, 1), the
functional

A → R, E 7→
∫
E

|f |p dµ

assumes all values between 0 and ‖f‖pLp . Then Lp(X,µ), with 0 < p < 1, contains no convex open sets, other
than ∅ and Lp(X,µ).

Proof. Let Ω be a nonempty convex open neighborhood of the origin in Lp(X) and f ∈ Lp(X) be arbitrary.

Since Ω is open, there exists a ball Bδ about the origin contained in Ω. Choose n ∈ Z≥1 such that
‖f‖p

Lp

n1−p ≤ δ
(i.e. nf ∈ Bnδ). Note that we can choose such a n precisely because p ∈ (0, 1). Using the intermediate value
hypothesis for the measure space, there exists a measurable set E1 such that∫

E1

|f |p dµ =
1

n

∫
X

|f |p dµ =
‖f‖pLp

n

Repeating the argument for f1 = f1Ec
1

and apply induction, we obtain a partition {E1, · · · , En} of X into disjoint

measurable subsets such that
∫
Ej
|f |p =

‖f‖p
Lp

n ∀j = 1, · · · , n. Define hj := nf1Ej
. Then by our choice of n,∫

X

|hj |p dµ =

∫
Ej

np |f |p dµ =
1

n1−p

∫
X

|f |p dµ ≤ δ

Hence, hj ∈ Bδ ⊂ Ω ∀j = 1, · · · , n. By convexity,

f =
h1 + · · ·+ hn

n
∈ Ω

Since f ∈ Lp(X,µ) was arbitrary, we obtain that Ω = Lp(X,µ).

Corollary 8. With (X,A, µ) as above, the natural topology for Lp(X,µ), with 0 < p < 1, is not locally convex.

The following result, originally proven by M.M. Day, shows that the Hahn-Banach theorem fails for Lp(X,µ),
when 0 < p < 1. Specifically, the Hahn-Banach theorem may fail when we only assume the underlying space is
quasi-normed.
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Theorem 9. (M.M. Day) Let p ∈ (0, 1) and let T : Lp(X,µ)→ Y be a continuous linear mapping of Lp(X,µ) into
a locally convex T0 space Y (i.e. singletons are closed). Then T is the zero map. In particular, Lp(X,µ)∗ = {0}.

Proof. Let T be such a map, and let B be a convex local base for Y at the origin. Let W ∈ B. Then T−1(W )
is a nonempty open convex subset of Lp(X,µ), hence by the preceding lemma, T−1(W ) = Lp(X,µ). Hence,
T (Lp(X,µ)) ⊂ W for all W ∈ B. I claim that

⋂
W∈BW = {0}. Assume the contrary, and let x 6= 0 be in the

intersection. Since singletons are closed in Y , Y \{x} is an open neighborhood of 0. Hence,
⋂
W∈BW ⊂ (Y \ {x}),

which is a contradiction. We conclude that T (Lp(X,µ)) = {0} ⇐⇒ T = 0.

1.4 Non-Normability

One might ask if Lp(X,µ), 0 < p < 1, is normable for an arbitrary measure space (X,A, µ). The following
example shows that it is not, even for a nice measure space.

Proposition 10. Let (fn)∞n=1 be a sequence in Lp ([0, 1],L, λ), where L is the Lebesgue σ-algebra and λ is
the Lebesgue measure on [0, 1]. Then there does not exist a norm ‖·‖ on Lp([0, 1]) such that for any sequence
(fn)n∈N ⊂ Lp([0, 1]), fn → 0 in Lp ⇒ ‖fn‖ → 0, n→∞.

Proof. Suppose such a norm ‖·‖ exists. I claim that there exists a positive constant C < ∞ such that ‖f‖ ≤
C ‖f‖Lp ∀f ∈ Lp ([0, 1]). Indeed, the map Lp([0, 1]) → R, f 7→ ‖f‖ is evidently continuous. Hence, there exists

δ > 0 such that ‖f‖Lp < δ ⇒ ‖f‖ ≤ 1. Then ∀f ∈ Lp([0, 1]), αδf
‖f‖Lp

∈ Bδ, where 0 < |α| < 1. Hence,∥∥∥∥ αδf

‖f‖Lp

∥∥∥∥ ≤ 1⇒ ‖f‖ ≤ 1

αδ
‖f‖Lp

Letting α→ 1, we see that the inequality holds for C = 1
δ . Choose C = inf {K : ‖f‖ ≤ K ‖f‖Lp ∀f ∈ Lp([0, 1])}

(Note that we do not exclude the possibility that C = 0). By the intermediate value theorem, there exists
c ∈ (0, 1) such that ∫ c

0

|f |p dλ =

∫ 1

c

|f |p dλ =
1

2

∫ 1

0

|f |p dλ

Set g = fχ[0,c] and h = fχ(c,1]. Then f = g + h and ‖g‖Lp = ‖h‖Lp = 2−
1
p ‖f‖Lp . By the triangle inequality,

‖f‖ ≤ ‖g‖+ ‖h‖ ≤ C (‖g‖Lp + ‖h‖Lp) =
C

2
1
p−1
‖f‖Lp

Since p ∈ (0, 1), C

2
1
p
−1
≤ C ⇒ C = 0⇒ ‖f‖ = 0 ∀f ∈ Lp(X,µ), which contradicts that ‖·‖ is a norm.

Remark 11. In fact, the non-normability of Lp([0, 1]), when 0 < p < 1, follows from M.M. Day’s thoerem. If
Lp([0, 1]) were normable, then the Hahn-Banach theorem would hold, contradicting that Lp([0, 1])∗ = {0}. So we
have the more general assertion that given any measure space (X,A, µ) which satisfies the hypotheses of Day’s
theorem, Lp(X,µ) is non-normable.
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